If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+7k+8=2
We move all terms to the left:
k^2+7k+8-(2)=0
We add all the numbers together, and all the variables
k^2+7k+6=0
a = 1; b = 7; c = +6;
Δ = b2-4ac
Δ = 72-4·1·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-5}{2*1}=\frac{-12}{2} =-6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+5}{2*1}=\frac{-2}{2} =-1 $
| 12(2+d)+9d=108 | | 5/6x10=0 | | -r/3-5=14 | | w/6+2=11 | | 4x-12=75 | | F(x)=3x^2+6x-8 | | x/4+1=-10 | | 2*x+8=-6+6*x | | x/4=1=-10 | | 6y/7-y/2=5 | | x/7+1+1=5 | | x/3+3=-6 | | 2x/3+x/4=11/6 | | 4^(x+2)+2^(2x+3)=98 | | x/9+7=-4 | | 4p+3-6p=3p+3-10p | | (2x+0.6)+x=8.4 | | 18x+5=167 | | 3/4=5/6-3a/2 | | (1/n)+(2/(n+1))=2 | | 1/n+2/(n+1)=2 | | 2/3h+4=5 | | 5/2=3/4+p/8 | | X-25=1/3x+121 | | 2x(2/3)-x(1/3)-28=0 | | 2(2x-1)-2=-24 | | 4^x+2+2^2x+3=98 | | x+1/9=5/6 | | x+5/6=7 | | -16=-16x | | 5/2+3x=10 | | 2x/3+6=24 |